By-catch reduction in tuna purse seine fisheries with FADs

Laurent Dagorn

IRD (Institute of Research for Development) – France

Chair of the ISSF Bycatch Committee

Main projects used to build this presentation:

ISSF Bycatch project – EU FP7 MADE - Orthongel shark and eco-FAD project

Bycatch rates: Comparison of tuna fisheries Kelleher (2005, FAO)

Bycatch as % Target Species (weight)

Bycatch in tuna fisheries

Example on sharks (Murua et al. 2013)

Gillnet: #1 in Indian

Longline: #1 In Western/Eastern
Pacific & Atlantic
#2 in Indian

Purse seine: #3 in all oceans (< 5%)

Pole and line (No bycatch)

The tropical tuna fishery and fish aggregating devices (FADs)

60-80% of the catch of purse seiners come from sets on floating objects 40% of the tropical tunas come from purse seine sets made on floating objects

Natural floating objects (e.g. logs)

Artificial floating objects (e.g. FADs)

FAD fishing generates 5 times more bycatch than free-swimming school fishing

Species composition on FAD sets (≈ 2000-2010)

Priorities in bycatch reduction in tropical tuna purse seine fishery

Sharks

Small bigeye tuna

Ecosystem impacts of FADs

What we have tried and have not shown great results so far

Adjusting time of fishing using behavioral information from acoustic tagging

What we have tried and have not shown great results so far

Attracting sharks away from FADs

FAD (n)	No. of sharks before drift	No. of sharks attracted	Max. distance attracted away from FAD (meters)
1	9	3	500
2	2	1	120
3	3	2	80
4	2	1	80
5	2	2	250

≈ 50%

variability in success of attraction

variability in the distance of attraction

What solutions were found to reduce the mortality of sharks?

#1. A previously unknown source of mortality

Two independent methods have shown the extent of the issue in the Indian Ocean (Filmalter et al. 2013 Frontiers in Evol & Env)

Underwater observations

Getting to the numbers

- Using a small data set, a model and FAD estimates:
- Daily mortality of 480 000 960 000 annually
- At a minimum several times more than the fishery (82 000)
- Could be different in other oceans (different types of FADs, different abundances of silky sharks)

Solution

Clearly, using nets is bad

=> future design of FADs should not have any netting (if possible use of biodegradable materials)

See ISSF recommendations & efforts by some RFMOs

ISSF GUIDE FOR NON-ENTANGLING FADS

The development of specific designs should be left to industry and the expertise of fishermen. However, basic guidelines for non-entangling environmentally friendly FADs are presented below:

- To reduce entanglement of turties on the FAD itself, the aurison structure should not be covered (Fig. 2.s.) or only overed with non-meshed meterial (Fig. 2.s. 2g.).
- If a sub-surface component is used, it should not be made from netting but from non-meshed materials such as ropes or carvas sheets (Fig.2.s, 2.d, 2.f).
- To reduce the amount of synthetic marine debris, and to promote environmentally friendly FADs, the use of natural or biodegradable materials should be promoted (Fig. 2.d. 2.e).

RECOMMENDATIONS

#2. Targetting bigger aggregations

(Dagorn et al. 2012 Can. J. Fish. Aq. Sci.)

Contribution of sets of less than 10 t

25% sets4% tuna23% bycatch23% silky sharks

41% sets 10% tuna 43% bycatch 41% silky sharks 27% sets3% tuna23% bycatch33% silky sharks

31% sets 6% tuna 26% bycatch 21% silky sharks

#3. Releasing sharks from the deck with good practices

If fishermen do not release sharks from the deck with good practices

Guide of good practices for handling sharks

MEDIUM PELAGIC SHARKS

HOW TO HANDLE AND RELEASE SHARKS

Medium sized fish can be handled by two persons: one crew member holds the dorsal fin and the pectoral fin, keeping well away from the head, and the second crew grabs the tail.

If you are obliged to delay its release:

- prevent the animal from battering itself on the deck and surrounding hard objects,
- > place the animal in the shade and water regularly it,
- use a hose placed in the jaw with a moderate flow of water if you want to delay its release.

HOW TO CALM DOWN A VIGOUROUS SHARK

Cover the shark's eyes with a piece of smooth, wet and dark cloth. Never press this against the eyes.

HOW TO PREVENT SHARK BITES

A dead fish (skipjack) or a big stick placed between the jaws prevents it from biting and will allow it to be handled safely.

LARGE ANIMALS

HOW TO RELEASE A LARGE ANIMAL

Very large fish, like large sharks, mantas or moonfish, can be directly released from the brailer.

Alternatively, they can be returned to the sea using a piece of net or a piece of plastic canvas that can be lifted by the crane. Before each set, the crew must prepare a piece of net (or a piece of canvas) on the deck to be ready to release large animals.

Numbers of dead and live sharks on the deck

Estimating the survival of released sharks (Indian and Western Pacific)

Tagging (WC MiniPATs)

50% die 50% survive

The advantage of adopting good practices

Future research

Solutions must be found before sharks are in the sack (last part of the net)

Escape panel

Using competition between attracting devices to segregate species (double FADs)

Reducing the mortality of sharks

- More research is needed to continue reducing the number of sharks killed by purse seine fisheries, but efforts should also be done in other fisheries (or other measures to « help » shark populations?)
- Fishers must understand why it is important to reduce the mortality of sharks and adopt good practices (ISSF skippers' workshops)

Sustainable FAD fisheries

- Monitor the number and type of FADs
- Limit the number of FADs or FAD sets?
- Develop research to better control the fisheryinduced mortality of small bigeye tuna
- Develop research to assess the effects of deploying thousands of FADs on the ecology of pelagic species