Overview - Introduction - What is compensatory mitigation? - Theoretical challenges - Practical challenges - Implementation record - Mitigation in the marine environment - Conclusions ### Introduction - Compensatory biodiversity legislation in 45 countries, under development in an additional ~30 - Terrestrial biodiversity markets worth >>\$4bn per annum (Madsen et al., 2011) - Compensatory mitigation increasingly important in contemporary conservation - To date, mainly established in terrestrial environments ### What is compensatory mitigation? The last step of the 'mitigation hierarchy' after - Avoidance - Minimisation - 1. Provide **substitution** or **replacement** for **unavoidable** negative impacts of human activity on **biodiversity** - 2. Involve **measurable**, **comparable** biodiversity **losses** and **gains** - 3. Demonstrably achieve no net loss of biodiversity ### What is compensatory mitigation? There are currently 38 companies with no net loss-type commitments, including 15 from the mining and aggregates sectors [TBC 2012b].18 ### Challenges - Despite repeatedly suggesting that it is a good idea in principle... - ...the literature offers numerous hurdles for compensatory mitigation to overcome - We group these challenges into: - the theoretical - the practical | Problem Description | | Relevant research | | | |---------------------|--|--|--|--| | (a) Currency | Choosing metrics for
measuring biodiversity | McKenneny & Kiesecker (2010);
Temple et al., (2010); Treweek et al.
(2010); BBOP (2009a); Norton
(2009); Walker et al. (2009); Burgin
(2008); Chapman & LeJeune (2007);
McCarthy et al., (2004); Godden &
Vernon (2003); Salzman & Ruhl
(2000); Humphries et al. (1992) | | | | (b) No net loss | Defining requirements
for demonstrating no net
loss of biodiversity | Gordon et al. (2011); Bekessey et al.
(2010); McKenneny & Kiesecker
(2010); BBOP (2005a); Gornod &
Keith (2009); Gitzons &
Lindenmayer (2007) | | | | (c) Equivalence | Demonstrating
equivalence between
blodiversity losses and
gains | Quetier & Lavorel (2011); Burrows et al. (2021); McKenneny & Kiesecker (2016); Bruggeman et al (2009); 2665; Norton (2009); Chapman & LeJeune (2007); Gibbons & Lindenmayer (2007); Godden & Vernon (2003) | | | | (d) Longevity | Defining how long offset
schemes should endure | Mchanneny & Kiesecker (2010);
BBOP (2009a); Gibbons &
Lindennaver (2007); Morris et al.
(2006) | | | | (e) Time lag | Deciding whether to
allow a temporal gap
between development
and offset gains | Gordon et al. (2011); Bekessey et al. (2010); McKennewy & Kiesecker (2010); Moilanen et al. (2009); Norton (2009); Gibbons & Lindenmayer (2007); Mistris et al. (2006) | | | | (f) Uncertainty | Managing for
uncertainties throughout
the offset process | Treweek et al. (2010); Moilanes et al. (2009); Norton (2009) | | | | (h) Reversibility | Defining how reversible
development impacts
must be | BBOP (2012); Godden & Vemon
(2003) | | | | (i) Thresholds | Defining threshold
biodiversity values | BBOP (2012); BBOP (2009a); Norton (2009); Gibbons & Lindenmayer | | | (2007); Morris et al. (2006) - Problems arising in design, potentially resolved through better science... - …once certain value judgments have been made - 6 areas for discussion #### No Net Loss (NNL) - NNL of what? Variety or function? - Metrics: prescriptive or open to interpretation - Scale: local, regional, national, global - Baselines: fixed or counterfactual, BAU or No Development Genetic variety Species variety Ecosystem variety #### **Managing uncertainty** - Identifying sources of uncertainty - Modeling approaches: e.g. Management Strategy Evaluation - Tools: Multipliers, Banking mechanisms - Different economic actors Epistemic Human decision #### **Longevity** - 'In perpetuity' vs. 'as long as development' - Moving targets: moving PAs, species lifecycle, temporary contracts - Project financing: insurance, bonds, trust funds, biodiversity banks - Legislation: covenants, land tenure Social change Environmental change Economic change #### **Equivalence** - 'Like for like' vs. 'out of kind'. Economic efficiencies. - 'Trading up' only? Habitats or species? - Public to private land? - Financial compensation = liquefying natural assets? #### **Thresholds** - Conservation concern - Residual impact magnitude - Compensation opportunities - Feasibility of restoration Impacts Opportunities Feasibility #### **Restorability** - Sufficient science? - Proof of implementation? - Managing uncertainties to avoid spiraling costs - Time lags: NPV Near shore High seas # Practical challenges | Root problem | Manifestation | Example | | |---|--|--|--| | (1) Compliance | Non-compliance with the mitigation hierarchy Insufficient compensation proposed Offsets not implemented, or only partially implemented Legislation changes during offset | Mühlenburger Loch,
German,
Mühlenburger Loch,
Germany
Wetland banking, US
Fish habitat, Canada
Forest Code, Brazil | Problems that arise in
practice, cannot be
resolved through
improved science | | (2) Measuring
ecological
outcomes | Monitoring different rhings suggests different ecological autcomes Difference in opinion about ecological outcomes Outcomes not measured for very long Outcomes not monitored at all | Wetland banking, US Basslink project, Australia Fish habitat, Canada Conservation | Potentially more
important than
theoretical challenges | | | No follow up by regulator | banking, US
Conservation
banking, US | So – how successful have they been in | | (3) Uncertainty | In measurement of biodiversity baseline In magnitude and type of development impacts Offsets fail to establish or persist Development causes greater impacts than expected. | Native glassland,
Australia
Extractive sector,
Uzbekistan
Wetland banking, US
Fish habitat, Canada | practice? | # Implementation record | Related to | Country | Mechanism | Implementation success rates | | Sample size | Reference | |--------------------------------|--------------------|--------------------------------|------------------------------|---|---|--------------------------------------| | | US | Wetland banking | 30 % | of projects meet all
project objectives | 76 sites | Matthews &
Endress
(2008) | | Compliance, Uncertainty | US | Wetland banking | 50 % | of projects fully implemented | 23 sites | Mitsch &
Wilson (1996) | | | US | Wetland banking | 74 % | of projects achieve
no net loss | 68 banks | Brown & Lant
(1996) | | | Canada | Fish habitat compensation | 12 - 13 % | of projects
implemented as
required | 52 sites | Quigly &
Harper
(2006a) | | Monitoring ecological outcomes | Australia | Native vegetation compensation | 80 % | reduction in
approvals for
vegetation
clearance | Across New
South Wales,
Australia | Gibbons
(2010) | | | US
(California) | Wetland banking | 0 % | of created wetlands
were functionally
successful | 40 sites | Sudal (1996)
in Ambrose
(2000) | | | Canada | Fish habitat compensation | 37 % | of projects didn't
result in a loss of
productivity | 16 sites | Quigly &
Harper
(2006b) | ### Mitigation in the marine environment ### Conclusions - Compensatory mitigation not unified by one conceptual framework - But growing interest in its application in marine systems - Numerous theoretical challenges to overcome - Poor success rate to date in implementation - Potential, but <u>must</u> restrict cases in which we consider mitigation <u>appropriate</u> # Thank you j.bull10@imperial.ac.uk #### <u>Acknowledgements</u> E.J. Milner-Gulland (ICL), K. Blake Suttle (ICL), Paul Hotham (FFI), Ascelin Gordon (RMIT), Navinder J. Singh (SLU)