

### Overview

- Introduction
- What is compensatory mitigation?
- Theoretical challenges
- Practical challenges
- Implementation record
- Mitigation in the marine environment
- Conclusions

### Introduction

- Compensatory biodiversity legislation in 45 countries, under development in an additional ~30
- Terrestrial biodiversity markets worth >>\$4bn per annum (Madsen et al., 2011)
- Compensatory mitigation increasingly important in contemporary conservation
- To date, mainly established in terrestrial environments

### What is compensatory mitigation?

The last step of the 'mitigation hierarchy' after

- Avoidance
- Minimisation
- 1. Provide **substitution** or **replacement** for **unavoidable** negative impacts of human activity on **biodiversity**
- 2. Involve **measurable**, **comparable** biodiversity **losses** and **gains**
- 3. Demonstrably achieve no net loss of biodiversity

### What is compensatory mitigation?



There are currently 38 companies with no net loss-type commitments, including 15 from the mining and aggregates sectors [TBC 2012b].18

### Challenges

- Despite repeatedly suggesting that it is a good idea in principle...
- ...the literature offers numerous hurdles for compensatory mitigation to overcome
- We group these challenges into:
  - the theoretical
  - the practical

| Problem Description |                                                                                        | Relevant research                                                                                                                                                                                                                                                                            |  |  |
|---------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| (a) Currency        | Choosing metrics for<br>measuring biodiversity                                         | McKenneny & Kiesecker (2010);<br>Temple et al., (2010); Treweek et al.<br>(2010); BBOP (2009a); Norton<br>(2009); Walker et al. (2009); Burgin<br>(2008); Chapman & LeJeune (2007);<br>McCarthy et al., (2004); Godden &<br>Vernon (2003); Salzman & Ruhl<br>(2000); Humphries et al. (1992) |  |  |
| (b) No net loss     | Defining requirements<br>for demonstrating no net<br>loss of biodiversity              | Gordon et al. (2011); Bekessey et al.<br>(2010); McKenneny & Kiesecker<br>(2010); BBOP (2005a); Gornod &<br>Keith (2009); Gitzons &<br>Lindenmayer (2007)                                                                                                                                    |  |  |
| (c) Equivalence     | Demonstrating<br>equivalence between<br>blodiversity losses and<br>gains               | Quetier & Lavorel (2011); Burrows et al. (2021); McKenneny & Kiesecker (2016); Bruggeman et al (2009); 2665; Norton (2009); Chapman & LeJeune (2007); Gibbons & Lindenmayer (2007); Godden & Vernon (2003)                                                                                   |  |  |
| (d) Longevity       | Defining how long offset<br>schemes should endure                                      | Mchanneny & Kiesecker (2010);<br>BBOP (2009a); Gibbons &<br>Lindennaver (2007); Morris et al.<br>(2006)                                                                                                                                                                                      |  |  |
| (e) Time lag        | Deciding whether to<br>allow a temporal gap<br>between development<br>and offset gains | Gordon et al. (2011); Bekessey et al. (2010); McKennewy & Kiesecker (2010); Moilanen et al. (2009); Norton (2009); Gibbons & Lindenmayer (2007); Mistris et al. (2006)                                                                                                                       |  |  |
| (f) Uncertainty     | Managing for<br>uncertainties throughout<br>the offset process                         | Treweek et al. (2010); Moilanes et al. (2009); Norton (2009)                                                                                                                                                                                                                                 |  |  |
| (h) Reversibility   | Defining how reversible<br>development impacts<br>must be                              | BBOP (2012); Godden & Vemon<br>(2003)                                                                                                                                                                                                                                                        |  |  |
| (i) Thresholds      | Defining threshold<br>biodiversity values                                              | BBOP (2012); BBOP (2009a); Norton (2009); Gibbons & Lindenmayer                                                                                                                                                                                                                              |  |  |

(2007); Morris et al. (2006)

- Problems arising in design, potentially resolved through better science...
- …once certain value judgments have been made
- 6 areas for discussion

#### No Net Loss (NNL)

- NNL of what? Variety or function?
- Metrics: prescriptive or open to interpretation
- Scale: local, regional, national, global
- Baselines: fixed or counterfactual, BAU or No Development

Genetic variety



Species variety



Ecosystem variety



#### **Managing uncertainty**

- Identifying sources of uncertainty
- Modeling approaches: e.g. Management Strategy Evaluation
- Tools: Multipliers, Banking mechanisms
- Different economic actors





Epistemic



Human decision



#### **Longevity**

- 'In perpetuity' vs. 'as long as development'
- Moving targets: moving PAs, species lifecycle, temporary contracts
- Project financing: insurance, bonds, trust funds, biodiversity banks
- Legislation: covenants, land tenure

Social change



Environmental change



Economic change



#### **Equivalence**

- 'Like for like' vs. 'out of kind'. Economic efficiencies.
- 'Trading up' only? Habitats or species?
- Public to private land?
- Financial compensation = liquefying natural assets?







#### **Thresholds**

- Conservation concern
- Residual impact magnitude
- Compensation opportunities
- Feasibility of restoration

Impacts



Opportunities



Feasibility



#### **Restorability**

- Sufficient science?
- Proof of implementation?
- Managing uncertainties to avoid spiraling costs
- Time lags: NPV





Near shore



High seas



# Practical challenges

| Root problem                            | Manifestation                                                                                                                                                                                    | Example                                                                                                                              |                                                                                                              |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| (1) Compliance                          | Non-compliance with the mitigation hierarchy     Insufficient compensation proposed     Offsets not implemented, or only partially implemented     Legislation changes during offset             | Mühlenburger Loch,<br>German,<br>Mühlenburger Loch,<br>Germany<br>Wetland banking, US<br>Fish habitat, Canada<br>Forest Code, Brazil | <ul> <li>Problems that arise in<br/>practice, cannot be<br/>resolved through<br/>improved science</li> </ul> |
| (2) Measuring<br>ecological<br>outcomes | Monitoring different rhings suggests different ecological autcomes     Difference in opinion about ecological outcomes     Outcomes not measured for very long     Outcomes not monitored at all | Wetland banking, US  Basslink project, Australia Fish habitat, Canada Conservation                                                   | <ul> <li>Potentially more<br/>important than<br/>theoretical challenges</li> </ul>                           |
|                                         | No follow up by regulator                                                                                                                                                                        | banking, US<br>Conservation<br>banking, US                                                                                           | <ul> <li>So – how successful have they been in</li> </ul>                                                    |
| (3) Uncertainty                         | In measurement of biodiversity baseline In magnitude and type of development impacts Offsets fail to establish or persist Development causes greater impacts than expected.                      | Native glassland,<br>Australia<br>Extractive sector,<br>Uzbekistan<br>Wetland banking, US<br>Fish habitat, Canada                    | practice?                                                                                                    |

# Implementation record

| Related to                     | Country            | Mechanism                      | Implementation success rates |                                                           | Sample size                             | Reference                            |
|--------------------------------|--------------------|--------------------------------|------------------------------|-----------------------------------------------------------|-----------------------------------------|--------------------------------------|
|                                | US                 | Wetland banking                | 30 %                         | of projects meet all<br>project objectives                | 76 sites                                | Matthews &<br>Endress<br>(2008)      |
| Compliance, Uncertainty        | US                 | Wetland banking                | 50 %                         | of projects fully implemented                             | 23 sites                                | Mitsch &<br>Wilson (1996)            |
|                                | US                 | Wetland banking                | 74 %                         | of projects achieve<br>no net loss                        | 68 banks                                | Brown & Lant<br>(1996)               |
|                                | Canada             | Fish habitat compensation      | 12 - 13 %                    | of projects<br>implemented as<br>required                 | 52 sites                                | Quigly &<br>Harper<br>(2006a)        |
| Monitoring ecological outcomes | Australia          | Native vegetation compensation | 80 %                         | reduction in<br>approvals for<br>vegetation<br>clearance  | Across New<br>South Wales,<br>Australia | Gibbons<br>(2010)                    |
|                                | US<br>(California) | Wetland banking                | 0 %                          | of created wetlands<br>were functionally<br>successful    | 40 sites                                | Sudal (1996)<br>in Ambrose<br>(2000) |
|                                | Canada             | Fish habitat compensation      | 37 %                         | of projects didn't<br>result in a loss of<br>productivity | 16 sites                                | Quigly &<br>Harper<br>(2006b)        |

### Mitigation in the marine environment



### Conclusions

- Compensatory mitigation not unified by one conceptual framework
- But growing interest in its application in marine systems
- Numerous theoretical challenges to overcome
- Poor success rate to date in implementation
- Potential, but <u>must</u> restrict cases in which we consider mitigation <u>appropriate</u>



# Thank you

j.bull10@imperial.ac.uk

#### <u>Acknowledgements</u>

E.J. Milner-Gulland (ICL), K. Blake Suttle (ICL), Paul Hotham (FFI), Ascelin Gordon (RMIT), Navinder J. Singh (SLU)