# Organization

- I. Motivation
- II. General Issues
- III. Voluntary Approaches
- IV. Regulatory Approaches
- V. Parting Thoughts





#### Lessons from Environmental Policies

- Bycatch reduction is related to reducing environmental pollution or greenhouse gasses.
- An undesirable byproduct from production of a desirable one.
- What can bycatch reduction learn from experience in reducing pollution and greenhouses gasses?

### Externality

- An impact not considered by firms or consumers and not included in market price.
- Called an <u>external cost</u> with bycatch, pollution, greenhouse gasses.
- Can also be called a public bad.



### Motivation

- Command-and-control measures are top down.
- Have not worked well in pollution or greenhouse gas control & same recognition is growing for fisheries bycatch.
- They are gradually being abandoned in pollution and greenhouse gas control for methods that create explicit incentives at the level of individual decision maker to reduce pollution.
- Increasing the cost of emitting pollution by making marginal units of emissions costly => changing incentives at plant level to induce decisions that reduce emissions.

# II. General Issues



### Technology & Behavior

- Bycatch reduction is both a <u>technological</u> and <u>behavioral</u> problem.
- Technology
  - Multiple product (multispecies) harvest technology
  - Some ability to avoid bycatch by changing catch-bycatch mix
  - Stochasticity can be important
- Behavior
  - Incentives

#### Incentives Induce Changes In Behavior:

- Location and timing of fishing to avoid bycatch
- Bycatch handling
- Technology (e.g. FAD design and adoption, circle hooks)
- Consumer behavior
- Etc.

### Incentives

- Incentives change behavior
- Positive ("carrots")
  - Reward favored behavior
  - Market access, subsidies, payments for ecosystem services
- Negative ("sticks")
  - Penalize unfavorable behavior
  - Taxes, fines, penalties, deny market access
- Perverse/unexpected
  - Behavior undesired/unexpected by society
  - Payments for releasing turtles can create incentive to catch them just to release them

#### Short- vs. Long-Run Incentive Impacts

- Short-Run:
  - Alter timing and location of fishing, catch composition, etc.
- Long-Run:
  - Technical change and fleet reconfiguration.



### Policy Design & Flexibility

- Need to factor incentives (both positive and negative) into policy design
- For cost-effectiveness, generally want to give <u>flexibility</u> in how to meet environmental goal



### All Parties Address All Costs

- Fishers, processers, and consumers.
- Includes costs not presently captured by market values (externalities).
- Otherwise, don't have economic efficiency.



### "Price" Bycatch

- Increases bycatch cost to change behavior
- Pressures participants to innovate and reduce bycatch efficiently.
- Incentive approaches more economically efficient than "command-and-control" topdown and direct regulations.



### Practice vs. Performance...(1)

- Incentives on Practice (Inputs)
  - Harvest process (e.g. backdown procedure, no sundown sets)
  - Investment (e.g. Tori lines, FAD design)
  - Where most current emphasis lies
  - More indirect and weaker than when focused on performance (output)



### Practice vs. Performance...(2)

- Incentives on Performance
  - Outcomes (e.g. bycatch quotas, property rights)
  - Incentives stronger because more direct
  - More difficult and costly to verify, especially in fisheries where production occurs at sea

Two Approaches to Create Incentives Devolving to Individual Vessels...(1)

• (1) Directly implement policies at individual vessel level.



#### Two Approaches to Create Incentives Devolving to Individual Vessels...(2)

- (2) Implement on groups
  - Sufficiently small to devise and self-manage their own bycatch reduction scheme.
  - Good for rare events like endangered turtles
  - Example: group insurance or group bycatch quota.





### More Than Just Incentives

- Social norms are explicit or implicit rules specifying what behaviors are acceptable within a society or group
- Examples: awareness and education campaigns
  - Skipper workshops
  - Consumer preferences



## II.3. Economically Efficient Conservation

Copyright © SeaPics.com

#### Optimum Level of Bycatch is <u>Not</u> Zero!

 Reduce bycatch to level at which additional reductions increase costs of foregone profits more than benefits of bycatch reduction.



Quantity of Bycatch Reduced 22

#### In Practice, Cost-Effective Conservation

- Concentrate conservation where costs are lowest per unit bycatch reduction
- Least cost across different gear types, areas, fleets, life history and range of species.



#### Example of Cost-Effective Bycatch Reduction

Table 3. Annual cost per adult female of leatherback protection strategies

|                          | Annual cost of<br>intervention per adult<br>female | Ratio of cost of<br>fisheries interventions<br>relative to nesting |
|--------------------------|----------------------------------------------------|--------------------------------------------------------------------|
|                          |                                                    | beach intervention                                                 |
| Jamursba Medi/Warmon     | \$1,858                                            | \$1,858/\$1,858=1                                                  |
| nesting beach            |                                                    |                                                                    |
| Hawaii-based shallow-set | \$28,054                                           | \$28,054/\$1,858=15                                                |
| longline                 |                                                    |                                                                    |
| California drift gillnet | \$205,363                                          | \$205,363/\$1,858=111                                              |

Nesting site protection yields the greatest conservation bang for the buck and leaves profits to finance conservation.

Gjertsen, Squires, Dutton, Eguchi, Conservation Biology in press

#### Cost-Effectiveness & Flexibility

- Give vessels flexibility in how they meet environmental goal.
- Allows cost effectiveness
- Gives vessels ability to respond to changes in markets & environment

