

Possible applications of gene drive research for public health and conservation

Luke Alphey

www.pirbright.ac.uk

Gene drive properties

- Introduce new heritable trait into target population
 - Mating-based
 - exquisitely species-specific
 - direct impact limited to target species only
 - Target-seeking
 - released gene drive individuals will actively seek mates

Gene drive properties

- Introduce new heritable trait into target population
 - Mating-based
 - exquisitely species-specific
 - direct impact limited to target species only
 - Target-seeking
 - released gene drive individuals will actively seek mates

Single target species

Can access hard-toreach / hard-to-find populations

Gene drive properties

- Introduce new heritable trait into target population
 - Mating-based
 - exquisitely species-specific
 - direct impact limited to target species only
 - Target-seeking
 - released gene drive individuals will actively seek mates

Can access hard-toreach / hard-to-find populations

Most current pest control

Single target species

- What trait(s)?
 - Population suppression reduce number of population
 - sterility or similar if enough pests gain the trait the target population will decline
 - Population modification reduce harm caused by population
 - pathogen resistance
 - outcome conceptually similar to "vaccinating" pest population

Gene drive applications

oche dilve application

- **Population suppression**
 - Rodents (mice, rats) on islands [conservation]
 - Mosquitoes
 - Malaria in sub-Saharan Africa [public health]
 - Dengue and other mosquito-borne viruses [public health]
 - Avian disease [conservation]
 - Agricultural pests
 - Spotted-wing Drosophila (one of rather few examples) [agricultural pest]
- Population replacement
 - Mosquitoes
 - Malaria [public health]
 - Dengue and other mosquito-borne viruses [public health]
- NB these all target wild pest populations no obvious applications for domestic species, e.g. crop plants, livestock where breeding/mating is already under human control
- Current developers overwhelmingly universities/institutes; funders are governments and philanthropies

Example – malaria in sub-Saharan Africa

Single target species, short generation time

Malaria

- ~500,000 deaths per year, most are children <5yrs in sub-Saharan Africa</p>
 - □ Down from ~1m through use of bednets, enhanced spraying, treatment etc
- Mosquito-borne
 - Human malaria is exclusively transmitted by Anopheles mosquitoes
 - Most important species is Anopheles gambiae

Gene drive

- Spread a reduced-fertility or sex-ratio (male bias) gene through population/species
 [e.g. http://targetmalaria.org/]
 - Target mosquito population reduced below threshold needed to sustain malaria
- Spread gene(s) preventing transmission of the malaria parasite [e.g. http://malaria.bio.uci.edu/]
 - Target mosquito population remains, but unable to spread malaria

Aim to spread modification broadly through target mosquito species

Example – rodents on islands

Single target species, short generation time

Islands

- 5.3% of terrestrial area, often evolutionarily distinctive and vulnerable to new introductions
 - 75% of reptile, bird, amphibian and mammal extinctions combined have occurred on islands
 - invasive species implicated in 86% of all recorded extinctions on islands
 - □ invasive rats, mice, particularly important https://www.islandconservation.org/
 - successful examples of removal but difficult to achieve with current methods, e.g. mass poisoning

Gene drive

- Spread a reduced-fertility or sex-ratio (male bias) gene through population/species
 - eliminate invasive species from island
 - early stages, but genetics of mice & rats well understood

Aim to spread modification through island population only